The Algorithms logo
The Algorithms
AboutDonate

Random

E
/*
Permuted Congruential Generator
https://en.wikipedia.org/wiki/Permuted_congruential_generator

Note that this is _NOT_ intended for serious applications. Use this generator
at your own risk and only use your own values instead of the default ones if
you really know what you are doing.
 */
pub struct PCG32 {
    state: u64,
    multiplier: u64,
    increment: u64,
}

pub const PCG32_MULTIPLIER: u64 = 6364136223846793005_u64;
pub const PCG32_INCREMENT: u64 = 1442695040888963407_u64;

pub struct IterMut<'a> {
    pcg: &'a mut PCG32,
}

impl PCG32 {
    /// `stream` should be less than 1 << 63
    pub fn new(seed: u64, multiplier: u64, stream: u64) -> Self {
        // We should make sure that increment is odd
        let increment = (stream << 1) | 1;
        let mut pcg = PCG32 {
            state: seed.wrapping_add(increment),
            multiplier,
            increment,
        };
        pcg.next();
        pcg
    }
    pub fn new_default(seed: u64) -> Self {
        let multiplier = PCG32_MULTIPLIER;
        let increment = PCG32_INCREMENT;
        let mut pcg = PCG32 {
            state: seed.wrapping_add(increment),
            multiplier,
            increment,
        };
        pcg.next();
        pcg
    }
    #[inline]
    pub fn next(&mut self) {
        self.state = self
            .state
            .wrapping_mul(self.multiplier)
            .wrapping_add(self.increment);
    }
    #[inline]
    /// Advance the PCG by `delta` steps in O(lg(`delta`)) time. By passing
    /// a negative i64 as u64, it can go back too.
    pub fn advance(&mut self, mut delta: u64) {
        let mut acc_mult = 1u64;
        let mut acc_incr = 0u64;
        let mut curr_mlt = self.multiplier;
        let mut curr_inc = self.increment;
        while delta > 0 {
            if delta & 1 != 0 {
                acc_mult = acc_mult.wrapping_mul(curr_mlt);
                acc_incr = acc_incr.wrapping_mul(curr_mlt).wrapping_add(curr_inc);
            }
            curr_inc = curr_mlt.wrapping_add(1).wrapping_mul(curr_inc);
            curr_mlt = curr_mlt.wrapping_mul(curr_mlt);
            delta >>= 1;
        }
        self.state = acc_mult.wrapping_mul(self.state).wrapping_add(acc_incr);
    }
    #[inline]
    pub fn get_u32(&mut self) -> u32 {
        let mut x = self.state;
        let count = (x >> 59) as u32;

        self.next();

        x ^= x >> 18;
        ((x >> 27) as u32).rotate_right(count)
    }
    #[inline]
    pub fn get_u64(&mut self) -> u64 {
        self.get_u32() as u64 ^ ((self.get_u32() as u64) << 32)
    }
    #[inline]
    pub fn get_u16(&mut self) -> (u16, u16) {
        let res = self.get_u32();
        (res as u16, (res >> 16) as u16)
    }
    #[inline]
    pub fn get_u8(&mut self) -> (u8, u8, u8, u8) {
        let res = self.get_u32();
        (
            res as u8,
            (res >> 8) as u8,
            (res >> 16) as u8,
            (res >> 24) as u8,
        )
    }
    #[inline]
    pub fn get_state(&self) -> u64 {
        self.state
    }
    pub fn iter_mut(&mut self) -> IterMut {
        IterMut { pcg: self }
    }
}

impl<'a> Iterator for IterMut<'a> {
    type Item = u32;
    fn next(&mut self) -> Option<Self::Item> {
        Some(self.pcg.get_u32())
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn no_birthday() {
        // If the distribution is not almost uniform, the probability of
        // birthday paradox increases. For n=2^32 and k=1e5, the probability
        // of not having a collision is about (1 - (k+1)/n) ^ (k/2) which is
        // 0.3121 for this (n, k).
        // So this test is a (dumb) test for distribution, and for speed. This
        // is only basic sanity checking, as the actual algorithm was
        // rigorously tested by others before.
        let numbers = 1e5 as usize;
        let mut pcg = PCG32::new_default(314159);
        let mut pcg2 = PCG32::new_default(314159);
        assert_eq!(pcg.get_u32(), pcg2.get_u32());
        let mut randoms: Vec<u32> = pcg.iter_mut().take(numbers).collect::<Vec<u32>>();
        pcg2.advance(1000);
        assert_eq!(pcg2.get_u32(), randoms[1000]);
        pcg2.advance((-1001_i64) as u64);
        assert_eq!(pcg2.get_u32(), randoms[0]);
        randoms.sort_unstable();
        randoms.dedup();
        assert_eq!(randoms.len(), numbers);
    }
}