"""
Build a quantum circuit with pair or group of qubits to perform
quantum entanglement.
Quantum entanglement is a phenomenon observed at the quantum scale
where entangled particles stay connected (in some sense) so that
the actions performed on one of the particles affects the other,
no matter the distance between two particles.
"""
import qiskit
def quantum_entanglement(qubits: int = 2) -> qiskit.result.counts.Counts:
"""
# >>> quantum_entanglement(2)
# {'00': 500, '11': 500}
# ┌───┐ ┌─┐
# q_0: ┤ H ├──■──┤M├───
# └───┘┌─┴─┐└╥┘┌─┐
# q_1: ─────┤ X ├─╫─┤M├
# └───┘ ║ └╥┘
# c: 2/═══════════╩══╩═
# 0 1
Args:
qubits (int): number of quibits to use. Defaults to 2
Returns:
qiskit.result.counts.Counts: mapping of states to its counts
"""
classical_bits = qubits
simulator = qiskit.Aer.get_backend("qasm_simulator")
circuit = qiskit.QuantumCircuit(qubits, classical_bits)
circuit.h(0)
for i in range(1, qubits):
circuit.cx(i - 1, i)
circuit.measure(list(range(qubits)), list(range(classical_bits)))
job = qiskit.execute(circuit, simulator, shots=1000)
return job.result().get_counts(circuit)
if __name__ == "__main__":
print(f"Total count for various states are: {quantum_entanglement(3)}")