"""
Created on Mon Feb 26 14:29:11 2018
@author: Christian Bender
@license: MIT-license
This module contains some useful classes and functions for dealing
with linear algebra in python.
Overview:
- class Vector
- function zero_vector(dimension)
- function unit_basis_vector(dimension, pos)
- function axpy(scalar, vector1, vector2)
- function random_vector(N, a, b)
- class Matrix
- function square_zero_matrix(N)
- function random_matrix(W, H, a, b)
"""
from __future__ import annotations
import math
import random
from collections.abc import Collection
from typing import overload
class Vector:
"""
This class represents a vector of arbitrary size.
You need to give the vector components.
Overview of the methods:
__init__(components: Collection[float] | None): init the vector
__len__(): gets the size of the vector (number of components)
__str__(): returns a string representation
__add__(other: Vector): vector addition
__sub__(other: Vector): vector subtraction
__mul__(other: float): scalar multiplication
__mul__(other: Vector): dot product
set(components: Collection[float]): changes the vector components
copy(): copies this vector and returns it
component(i): gets the i-th component (0-indexed)
change_component(pos: int, value: float): changes specified component
euclidean_length(): returns the euclidean length of the vector
angle(other: Vector, deg: bool): returns the angle between two vectors
TODO: compare-operator
"""
def __init__(self, components: Collection[float] | None = None) -> None:
"""
input: components or nothing
simple constructor for init the vector
"""
if components is None:
components = []
self.__components = list(components)
def __len__(self) -> int:
"""
returns the size of the vector
"""
return len(self.__components)
def __str__(self) -> str:
"""
returns a string representation of the vector
"""
return "(" + ",".join(map(str, self.__components)) + ")"
def __add__(self, other: Vector) -> Vector:
"""
input: other vector
assumes: other vector has the same size
returns a new vector that represents the sum.
"""
size = len(self)
if size == len(other):
result = [self.__components[i] + other.component(i) for i in range(size)]
return Vector(result)
else:
raise Exception("must have the same size")
def __sub__(self, other: Vector) -> Vector:
"""
input: other vector
assumes: other vector has the same size
returns a new vector that represents the difference.
"""
size = len(self)
if size == len(other):
result = [self.__components[i] - other.component(i) for i in range(size)]
return Vector(result)
else:
raise Exception("must have the same size")
@overload
def __mul__(self, other: float) -> Vector:
...
@overload
def __mul__(self, other: Vector) -> float:
...
def __mul__(self, other: float | Vector) -> float | Vector:
"""
mul implements the scalar multiplication
and the dot-product
"""
if isinstance(other, float) or isinstance(other, int):
ans = [c * other for c in self.__components]
return Vector(ans)
elif isinstance(other, Vector) and len(self) == len(other):
size = len(self)
prods = [self.__components[i] * other.component(i) for i in range(size)]
return sum(prods)
else:
raise Exception("invalid operand!")
def set(self, components: Collection[float]) -> None:
"""
input: new components
changes the components of the vector.
replaces the components with newer one.
"""
if len(components) > 0:
self.__components = list(components)
else:
raise Exception("please give any vector")
def copy(self) -> Vector:
"""
copies this vector and returns it.
"""
return Vector(self.__components)
def component(self, i: int) -> float:
"""
input: index (0-indexed)
output: the i-th component of the vector.
"""
if type(i) is int and -len(self.__components) <= i < len(self.__components):
return self.__components[i]
else:
raise Exception("index out of range")
def change_component(self, pos: int, value: float) -> None:
"""
input: an index (pos) and a value
changes the specified component (pos) with the
'value'
"""
assert -len(self.__components) <= pos < len(self.__components)
self.__components[pos] = value
def euclidean_length(self) -> float:
"""
returns the euclidean length of the vector
>>> Vector([2, 3, 4]).euclidean_length()
5.385164807134504
>>> Vector([1]).euclidean_length()
1.0
>>> Vector([0, -1, -2, -3, 4, 5, 6]).euclidean_length()
9.539392014169456
>>> Vector([]).euclidean_length()
Traceback (most recent call last):
...
Exception: Vector is empty
"""
if len(self.__components) == 0:
raise Exception("Vector is empty")
squares = [c**2 for c in self.__components]
return math.sqrt(sum(squares))
def angle(self, other: Vector, deg: bool = False) -> float:
"""
find angle between two Vector (self, Vector)
>>> Vector([3, 4, -1]).angle(Vector([2, -1, 1]))
1.4906464636572374
>>> Vector([3, 4, -1]).angle(Vector([2, -1, 1]), deg = True)
85.40775111366095
>>> Vector([3, 4, -1]).angle(Vector([2, -1]))
Traceback (most recent call last):
...
Exception: invalid operand!
"""
num = self * other
den = self.euclidean_length() * other.euclidean_length()
if deg:
return math.degrees(math.acos(num / den))
else:
return math.acos(num / den)
def zero_vector(dimension: int) -> Vector:
"""
returns a zero-vector of size 'dimension'
"""
assert isinstance(dimension, int)
return Vector([0] * dimension)
def unit_basis_vector(dimension: int, pos: int) -> Vector:
"""
returns a unit basis vector with a One
at index 'pos' (indexing at 0)
"""
assert isinstance(dimension, int) and (isinstance(pos, int))
ans = [0] * dimension
ans[pos] = 1
return Vector(ans)
def axpy(scalar: float, x: Vector, y: Vector) -> Vector:
"""
input: a 'scalar' and two vectors 'x' and 'y'
output: a vector
computes the axpy operation
"""
assert (
isinstance(x, Vector)
and isinstance(y, Vector)
and (isinstance(scalar, int) or isinstance(scalar, float))
)
return x * scalar + y
def random_vector(n: int, a: int, b: int) -> Vector:
"""
input: size (N) of the vector.
random range (a,b)
output: returns a random vector of size N, with
random integer components between 'a' and 'b'.
"""
random.seed(None)
ans = [random.randint(a, b) for _ in range(n)]
return Vector(ans)
class Matrix:
"""
class: Matrix
This class represents an arbitrary matrix.
Overview of the methods:
__init__():
__str__(): returns a string representation
__add__(other: Matrix): matrix addition
__sub__(other: Matrix): matrix subtraction
__mul__(other: float): scalar multiplication
__mul__(other: Vector): vector multiplication
height() : returns height
width() : returns width
component(x: int, y: int): returns specified component
change_component(x: int, y: int, value: float): changes specified component
minor(x: int, y: int): returns minor along (x, y)
cofactor(x: int, y: int): returns cofactor along (x, y)
determinant() : returns determinant
"""
def __init__(self, matrix: list[list[float]], w: int, h: int) -> None:
"""
simple constructor for initializing the matrix with components.
"""
self.__matrix = matrix
self.__width = w
self.__height = h
def __str__(self) -> str:
"""
returns a string representation of this matrix.
"""
ans = ""
for i in range(self.__height):
ans += "|"
for j in range(self.__width):
if j < self.__width - 1:
ans += str(self.__matrix[i][j]) + ","
else:
ans += str(self.__matrix[i][j]) + "|\n"
return ans
def __add__(self, other: Matrix) -> Matrix:
"""
implements matrix addition.
"""
if self.__width == other.width() and self.__height == other.height():
matrix = []
for i in range(self.__height):
row = [
self.__matrix[i][j] + other.component(i, j)
for j in range(self.__width)
]
matrix.append(row)
return Matrix(matrix, self.__width, self.__height)
else:
raise Exception("matrix must have the same dimension!")
def __sub__(self, other: Matrix) -> Matrix:
"""
implements matrix subtraction.
"""
if self.__width == other.width() and self.__height == other.height():
matrix = []
for i in range(self.__height):
row = [
self.__matrix[i][j] - other.component(i, j)
for j in range(self.__width)
]
matrix.append(row)
return Matrix(matrix, self.__width, self.__height)
else:
raise Exception("matrices must have the same dimension!")
@overload
def __mul__(self, other: float) -> Matrix:
...
@overload
def __mul__(self, other: Vector) -> Vector:
...
def __mul__(self, other: float | Vector) -> Vector | Matrix:
"""
implements the matrix-vector multiplication.
implements the matrix-scalar multiplication
"""
if isinstance(other, Vector):
if len(other) == self.__width:
ans = zero_vector(self.__height)
for i in range(self.__height):
prods = [
self.__matrix[i][j] * other.component(j)
for j in range(self.__width)
]
ans.change_component(i, sum(prods))
return ans
else:
raise Exception(
"vector must have the same size as the "
"number of columns of the matrix!"
)
elif isinstance(other, int) or isinstance(other, float):
matrix = [
[self.__matrix[i][j] * other for j in range(self.__width)]
for i in range(self.__height)
]
return Matrix(matrix, self.__width, self.__height)
def height(self) -> int:
"""
getter for the height
"""
return self.__height
def width(self) -> int:
"""
getter for the width
"""
return self.__width
def component(self, x: int, y: int) -> float:
"""
returns the specified (x,y) component
"""
if 0 <= x < self.__height and 0 <= y < self.__width:
return self.__matrix[x][y]
else:
raise Exception("change_component: indices out of bounds")
def change_component(self, x: int, y: int, value: float) -> None:
"""
changes the x-y component of this matrix
"""
if 0 <= x < self.__height and 0 <= y < self.__width:
self.__matrix[x][y] = value
else:
raise Exception("change_component: indices out of bounds")
def minor(self, x: int, y: int) -> float:
"""
returns the minor along (x, y)
"""
if self.__height != self.__width:
raise Exception("Matrix is not square")
minor = self.__matrix[:x] + self.__matrix[x + 1 :]
for i in range(len(minor)):
minor[i] = minor[i][:y] + minor[i][y + 1 :]
return Matrix(minor, self.__width - 1, self.__height - 1).determinant()
def cofactor(self, x: int, y: int) -> float:
"""
returns the cofactor (signed minor) along (x, y)
"""
if self.__height != self.__width:
raise Exception("Matrix is not square")
if 0 <= x < self.__height and 0 <= y < self.__width:
return (-1) ** (x + y) * self.minor(x, y)
else:
raise Exception("Indices out of bounds")
def determinant(self) -> float:
"""
returns the determinant of an nxn matrix using Laplace expansion
"""
if self.__height != self.__width:
raise Exception("Matrix is not square")
if self.__height < 1:
raise Exception("Matrix has no element")
elif self.__height == 1:
return self.__matrix[0][0]
elif self.__height == 2:
return (
self.__matrix[0][0] * self.__matrix[1][1]
- self.__matrix[0][1] * self.__matrix[1][0]
)
else:
cofactor_prods = [
self.__matrix[0][y] * self.cofactor(0, y) for y in range(self.__width)
]
return sum(cofactor_prods)
def square_zero_matrix(n: int) -> Matrix:
"""
returns a square zero-matrix of dimension NxN
"""
ans: list[list[float]] = [[0] * n for _ in range(n)]
return Matrix(ans, n, n)
def random_matrix(width: int, height: int, a: int, b: int) -> Matrix:
"""
returns a random matrix WxH with integer components
between 'a' and 'b'
"""
random.seed(None)
matrix: list[list[float]] = [
[random.randint(a, b) for _ in range(width)] for _ in range(height)
]
return Matrix(matrix, width, height)