/**
* \addtogroup machine_learning Machine Learning Algorithms
* @{
* \file
* \author [Krishna Vedala](https://github.com/kvedala)
*
* \brief [Kohonen self organizing
* map](https://en.wikipedia.org/wiki/Self-organizing_map) (topological map)
*
* \details
* This example implements a powerful unsupervised learning algorithm called as
* a self organizing map. The algorithm creates a connected network of weights
* that closely follows the given data points. This thus creates a topological
* map of the given data i.e., it maintains the relationship between varipus
* data points in a much higher dimesional space by creating an equivalent in a
* 2-dimensional space.
* <img alt="Trained topological maps for the test cases in the program"
* src="https://raw.githubusercontent.com/TheAlgorithms/C-Plus-Plus/docs/images/machine_learning/2D_Kohonen_SOM.svg"
* />
* \note This C++ version of the program is considerable slower than its [C
* counterpart](https://github.com/kvedala/C/blob/master/machine_learning/kohonen_som_trace.c)
* \note The compiled code is much slower when compiled with MS Visual C++ 2019
* than with GCC on windows
* \see kohonen_som_trace.cpp
*/
#define _USE_MATH_DEFINES //< required for MS Visual C++
#include <algorithm>
#include <array>
#include <cerrno>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <fstream>
#include <iostream>
#include <valarray>
#include <vector>
#ifdef _OPENMP // check if OpenMP based parallellization is available
#include <omp.h>
#endif
/**
* Helper function to generate a random number in a given interval.
* \n Steps:
* 1. `r1 = rand() % 100` gets a random number between 0 and 99
* 2. `r2 = r1 / 100` converts random number to be between 0 and 0.99
* 3. scale and offset the random number to given range of \f$[a,b]\f$
*
* \param[in] a lower limit
* \param[in] b upper limit
* \returns random number in the range \f$[a,b]\f$
*/
double _random(double a, double b) {
return ((b - a) * (std::rand() % 100) / 100.f) + a;
}
/**
* Save a given n-dimensional data martix to file.
*
* \param[in] fname filename to save in (gets overwriten without confirmation)
* \param[in] X matrix to save
* \returns 0 if all ok
* \returns -1 if file creation failed
*/
int save_2d_data(const char *fname,
const std::vector<std::valarray<double>> &X) {
size_t num_points = X.size(); // number of rows
size_t num_features = X[0].size(); // number of columns
std::ofstream fp;
fp.open(fname);
if (!fp.is_open()) {
// error with opening file to write
std::cerr << "Error opening file " << fname << ": "
<< std::strerror(errno) << "\n";
return -1;
}
// for each point in the array
for (int i = 0; i < num_points; i++) {
// for each feature in the array
for (int j = 0; j < num_features; j++) {
fp << X[i][j]; // print the feature value
if (j < num_features - 1) { // if not the last feature
fp << ","; // suffix comma
}
}
if (i < num_points - 1) { // if not the last row
fp << "\n"; // start a new line
}
}
fp.close();
return 0;
}
/**
* Get minimum value and index of the value in a matrix
* \param[in] X matrix to search
* \param[in] N number of points in the vector
* \param[out] val minimum value found
* \param[out] idx_x x-index where minimum value was found
* \param[out] idx_y y-index where minimum value was found
*/
void get_min_2d(const std::vector<std::valarray<double>> &X, double *val,
int *x_idx, int *y_idx) {
val[0] = INFINITY; // initial min value
size_t N = X.size();
for (int i = 0; i < N; i++) { // traverse each x-index
auto result = std::min_element(std::begin(X[i]), std::end(X[i]));
double d_min = *result;
std::ptrdiff_t j = std::distance(std::begin(X[i]), result);
if (d_min < val[0]) { // if a lower value is found
// save the value and its index
x_idx[0] = i;
y_idx[0] = j;
val[0] = d_min;
}
}
}
/** \namespace machine_learning
* \brief Machine learning algorithms
*/
namespace machine_learning {
/** Minimum average distance of image nodes */
constexpr double MIN_DISTANCE = 1e-4;
/**
* Create the distance matrix or
* [U-matrix](https://en.wikipedia.org/wiki/U-matrix) from the trained
* 3D weiths matrix and save to disk.
*
* \param [in] fname filename to save in (gets overwriten without
* confirmation)
* \param [in] W model matrix to save
* \returns 0 if all ok
* \returns -1 if file creation failed
*/
int save_u_matrix(const char *fname,
const std::vector<std::vector<std::valarray<double>>> &W) {
std::ofstream fp(fname);
if (!fp) { // error with fopen
std::cerr << "File error (" << fname << "): " << std::strerror(errno)
<< std::endl;
return -1;
}
// neighborhood range
unsigned int R = 1;
for (int i = 0; i < W.size(); i++) { // for each x
for (int j = 0; j < W[0].size(); j++) { // for each y
double distance = 0.f;
int from_x = std::max<int>(0, i - R);
int to_x = std::min<int>(W.size(), i + R + 1);
int from_y = std::max<int>(0, j - R);
int to_y = std::min<int>(W[0].size(), j + R + 1);
int l = 0, m = 0;
#ifdef _OPENMP
#pragma omp parallel for reduction(+ : distance)
#endif
for (l = from_x; l < to_x; l++) { // scan neighborhoor in x
for (m = from_y; m < to_y; m++) { // scan neighborhood in y
auto d = W[i][j] - W[l][m];
double d2 = std::pow(d, 2).sum();
distance += std::sqrt(d2);
// distance += d2;
}
}
distance /= R * R; // mean distance from neighbors
fp << distance; // print the mean separation
if (j < W[0].size() - 1) { // if not the last column
fp << ','; // suffix comma
}
}
if (i < W.size() - 1) { // if not the last row
fp << '\n'; // start a new line
}
}
fp.close();
return 0;
}
/**
* Update weights of the SOM using Kohonen algorithm
*
* \param[in] X data point - N features
* \param[in,out] W weights matrix - PxQxN
* \param[in,out] D temporary vector to store distances PxQ
* \param[in] alpha learning rate \f$0<\alpha\le1\f$
* \param[in] R neighborhood range
* \returns minimum distance of sample and trained weights
*/
double update_weights(const std::valarray<double> &X,
std::vector<std::vector<std::valarray<double>>> *W,
std::vector<std::valarray<double>> *D, double alpha,
int R) {
int x = 0, y = 0;
int num_out_x = static_cast<int>(W->size()); // output nodes - in X
int num_out_y = static_cast<int>(W[0][0].size()); // output nodes - in Y
// int num_features = static_cast<int>(W[0][0][0].size()); // features =
// in Z
double d_min = 0.f;
#ifdef _OPENMP
#pragma omp for
#endif
// step 1: for each output point
for (x = 0; x < num_out_x; x++) {
for (y = 0; y < num_out_y; y++) {
(*D)[x][y] = 0.f;
// compute Euclidian distance of each output
// point from the current sample
auto d = ((*W)[x][y] - X);
(*D)[x][y] = (d * d).sum();
(*D)[x][y] = std::sqrt((*D)[x][y]);
}
}
// step 2: get closest node i.e., node with snallest Euclidian distance
// to the current pattern
int d_min_x = 0, d_min_y = 0;
get_min_2d(*D, &d_min, &d_min_x, &d_min_y);
// step 3a: get the neighborhood range
int from_x = std::max(0, d_min_x - R);
int to_x = std::min(num_out_x, d_min_x + R + 1);
int from_y = std::max(0, d_min_y - R);
int to_y = std::min(num_out_y, d_min_y + R + 1);
// step 3b: update the weights of nodes in the
// neighborhood
#ifdef _OPENMP
#pragma omp for
#endif
for (x = from_x; x < to_x; x++) {
for (y = from_y; y < to_y; y++) {
/* you can enable the following normalization if needed.
personally, I found it detrimental to convergence */
// const double s2pi = sqrt(2.f * M_PI);
// double normalize = 1.f / (alpha * s2pi);
/* apply scaling inversely proportional to distance from the
current node */
double d2 =
(d_min_x - x) * (d_min_x - x) + (d_min_y - y) * (d_min_y - y);
double scale_factor = std::exp(-d2 / (2.f * alpha * alpha));
(*W)[x][y] += (X - (*W)[x][y]) * alpha * scale_factor;
}
}
return d_min;
}
/**
* Apply incremental algorithm with updating neighborhood and learning
* rates on all samples in the given datset.
*
* \param[in] X data set
* \param[in,out] W weights matrix
* \param[in] alpha_min terminal value of alpha
*/
void kohonen_som(const std::vector<std::valarray<double>> &X,
std::vector<std::vector<std::valarray<double>>> *W,
double alpha_min) {
size_t num_samples = X.size(); // number of rows
// size_t num_features = X[0].size(); // number of columns
size_t num_out = W->size(); // output matrix size
size_t R = num_out >> 2, iter = 0;
double alpha = 1.f;
std::vector<std::valarray<double>> D(num_out);
for (int i = 0; i < num_out; i++) D[i] = std::valarray<double>(num_out);
double dmin = 1.f; // average minimum distance of all samples
double past_dmin = 1.f; // average minimum distance of all samples
double dmin_ratio = 1.f; // change per step
// Loop alpha from 1 to slpha_min
for (; alpha > 0 && dmin_ratio > 1e-5; alpha -= 1e-4, iter++) {
// Loop for each sample pattern in the data set
for (int sample = 0; sample < num_samples; sample++) {
// update weights for the current input pattern sample
dmin += update_weights(X[sample], W, &D, alpha, R);
}
// every 100th iteration, reduce the neighborhood range
if (iter % 300 == 0 && R > 1) {
R--;
}
dmin /= num_samples;
// termination condition variable -> % change in minimum distance
dmin_ratio = (past_dmin - dmin) / past_dmin;
if (dmin_ratio < 0) {
dmin_ratio = 1.f;
}
past_dmin = dmin;
std::cout << "iter: " << iter << "\t alpha: " << alpha << "\t R: " << R
<< "\t d_min: " << dmin_ratio << "\r";
}
std::cout << "\n";
}
} // namespace machine_learning
using machine_learning::kohonen_som;
using machine_learning::save_u_matrix;
/** @} */
/** Creates a random set of points distributed in four clusters in
* 3D space with centroids at the points
* * \f$(0,5, 0.5, 0.5)\f$
* * \f$(0,5,-0.5, -0.5)\f$
* * \f$(-0,5, 0.5, 0.5)\f$
* * \f$(-0,5,-0.5, -0.5)\f$
*
* \param[out] data matrix to store data in
*/
void test_2d_classes(std::vector<std::valarray<double>> *data) {
const int N = data->size();
const double R = 0.3; // radius of cluster
int i = 0;
const int num_classes = 4;
std::array<std::array<double, 2>, num_classes> centres = {
// centres of each class cluster
std::array<double, 2>({.5, .5}), // centre of class 1
std::array<double, 2>({.5, -.5}), // centre of class 2
std::array<double, 2>({-.5, .5}), // centre of class 3
std::array<double, 2>({-.5, -.5}) // centre of class 4
};
#ifdef _OPENMP
#pragma omp for
#endif
for (i = 0; i < N; i++) {
// select a random class for the point
int cls = std::rand() % num_classes;
// create random coordinates (x,y,z) around the centre of the class
data[0][i][0] = _random(centres[cls][0] - R, centres[cls][0] + R);
data[0][i][1] = _random(centres[cls][1] - R, centres[cls][1] + R);
/* The follosing can also be used
for (int j = 0; j < 2; j++)
data[i][j] = _random(centres[class][j] - R, centres[class][j] + R);
*/
}
}
/** Test that creates a random set of points distributed in four clusters in
* circumference of a circle and trains an SOM that finds that circular pattern.
* The following [CSV](https://en.wikipedia.org/wiki/Comma-separated_values)
* files are created to validate the execution:
* * `test1.csv`: random test samples points with a circular pattern
* * `w11.csv`: initial random map
* * `w12.csv`: trained SOM map
*/
void test1() {
int j = 0, N = 300;
int features = 2;
int num_out = 30;
std::vector<std::valarray<double>> X(N);
std::vector<std::vector<std::valarray<double>>> W(num_out);
for (int i = 0; i < std::max(num_out, N); i++) {
// loop till max(N, num_out)
if (i < N) { // only add new arrays if i < N
X[i] = std::valarray<double>(features);
}
if (i < num_out) { // only add new arrays if i < num_out
W[i] = std::vector<std::valarray<double>>(num_out);
for (int k = 0; k < num_out; k++) {
W[i][k] = std::valarray<double>(features);
#ifdef _OPENMP
#pragma omp for
#endif
for (j = 0; j < features; j++) {
// preallocate with random initial weights
W[i][k][j] = _random(-10, 10);
}
}
}
}
test_2d_classes(&X); // create test data around circumference of a circle
save_2d_data("test1.csv", X); // save test data points
save_u_matrix("w11.csv", W); // save initial random weights
kohonen_som(X, &W, 1e-4); // train the SOM
save_u_matrix("w12.csv", W); // save the resultant weights
}
/** Creates a random set of points distributed in four clusters in
* 3D space with centroids at the points
* * \f$(0,5, 0.5, 0.5)\f$
* * \f$(0,5,-0.5, -0.5)\f$
* * \f$(-0,5, 0.5, 0.5)\f$
* * \f$(-0,5,-0.5, -0.5)\f$
*
* \param[out] data matrix to store data in
*/
void test_3d_classes1(std::vector<std::valarray<double>> *data) {
const size_t N = data->size();
const double R = 0.3; // radius of cluster
int i = 0;
const int num_classes = 4;
const std::array<std::array<double, 3>, num_classes> centres = {
// centres of each class cluster
std::array<double, 3>({.5, .5, .5}), // centre of class 1
std::array<double, 3>({.5, -.5, -.5}), // centre of class 2
std::array<double, 3>({-.5, .5, .5}), // centre of class 3
std::array<double, 3>({-.5, -.5 - .5}) // centre of class 4
};
#ifdef _OPENMP
#pragma omp for
#endif
for (i = 0; i < N; i++) {
// select a random class for the point
int cls = std::rand() % num_classes;
// create random coordinates (x,y,z) around the centre of the class
data[0][i][0] = _random(centres[cls][0] - R, centres[cls][0] + R);
data[0][i][1] = _random(centres[cls][1] - R, centres[cls][1] + R);
data[0][i][2] = _random(centres[cls][2] - R, centres[cls][2] + R);
/* The follosing can also be used
for (int j = 0; j < 3; j++)
data[i][j] = _random(centres[class][j] - R, centres[class][j] + R);
*/
}
}
/** Test that creates a random set of points distributed in 4 clusters in
* 3D space and trains an SOM that finds the topological pattern. The following
* [CSV](https://en.wikipedia.org/wiki/Comma-separated_values) files are created
* to validate the execution:
* * `test2.csv`: random test samples points with a lamniscate pattern
* * `w21.csv`: initial random map
* * `w22.csv`: trained SOM map
*/
void test2() {
int j = 0, N = 300;
int features = 3;
int num_out = 30;
std::vector<std::valarray<double>> X(N);
std::vector<std::vector<std::valarray<double>>> W(num_out);
for (int i = 0; i < std::max(num_out, N); i++) {
// loop till max(N, num_out)
if (i < N) { // only add new arrays if i < N
X[i] = std::valarray<double>(features);
}
if (i < num_out) { // only add new arrays if i < num_out
W[i] = std::vector<std::valarray<double>>(num_out);
for (int k = 0; k < num_out; k++) {
W[i][k] = std::valarray<double>(features);
#ifdef _OPENMP
#pragma omp for
#endif
for (j = 0; j < features; j++) {
// preallocate with random initial weights
W[i][k][j] = _random(-10, 10);
}
}
}
}
test_3d_classes1(&X); // create test data around circumference of a circle
save_2d_data("test2.csv", X); // save test data points
save_u_matrix("w21.csv", W); // save initial random weights
kohonen_som(X, &W, 1e-4); // train the SOM
save_u_matrix("w22.csv", W); // save the resultant weights
}
/** Creates a random set of points distributed in four clusters in
* 3D space with centroids at the points
* * \f$(0,5, 0.5, 0.5)\f$
* * \f$(0,5,-0.5, -0.5)\f$
* * \f$(-0,5, 0.5, 0.5)\f$
* * \f$(-0,5,-0.5, -0.5)\f$
*
* \param[out] data matrix to store data in
*/
void test_3d_classes2(std::vector<std::valarray<double>> *data) {
const size_t N = data->size();
const double R = 0.2; // radius of cluster
int i = 0;
const int num_classes = 8;
const std::array<std::array<double, 3>, num_classes> centres = {
// centres of each class cluster
std::array<double, 3>({.5, .5, .5}), // centre of class 1
std::array<double, 3>({.5, .5, -.5}), // centre of class 2
std::array<double, 3>({.5, -.5, .5}), // centre of class 3
std::array<double, 3>({.5, -.5, -.5}), // centre of class 4
std::array<double, 3>({-.5, .5, .5}), // centre of class 5
std::array<double, 3>({-.5, .5, -.5}), // centre of class 6
std::array<double, 3>({-.5, -.5, .5}), // centre of class 7
std::array<double, 3>({-.5, -.5, -.5}) // centre of class 8
};
#ifdef _OPENMP
#pragma omp for
#endif
for (i = 0; i < N; i++) {
// select a random class for the point
int cls = std::rand() % num_classes;
// create random coordinates (x,y,z) around the centre of the class
data[0][i][0] = _random(centres[cls][0] - R, centres[cls][0] + R);
data[0][i][1] = _random(centres[cls][1] - R, centres[cls][1] + R);
data[0][i][2] = _random(centres[cls][2] - R, centres[cls][2] + R);
/* The follosing can also be used
for (int j = 0; j < 3; j++)
data[i][j] = _random(centres[class][j] - R, centres[class][j] + R);
*/
}
}
/** Test that creates a random set of points distributed in eight clusters in
* 3D space and trains an SOM that finds the topological pattern. The following
* [CSV](https://en.wikipedia.org/wiki/Comma-separated_values) files are created
* to validate the execution:
* * `test3.csv`: random test samples points with a circular pattern
* * `w31.csv`: initial random map
* * `w32.csv`: trained SOM map
*/
void test3() {
int j = 0, N = 500;
int features = 3;
int num_out = 30;
std::vector<std::valarray<double>> X(N);
std::vector<std::vector<std::valarray<double>>> W(num_out);
for (int i = 0; i < std::max(num_out, N); i++) {
// loop till max(N, num_out)
if (i < N) { // only add new arrays if i < N
X[i] = std::valarray<double>(features);
}
if (i < num_out) { // only add new arrays if i < num_out
W[i] = std::vector<std::valarray<double>>(num_out);
for (int k = 0; k < num_out; k++) {
W[i][k] = std::valarray<double>(features);
#ifdef _OPENMP
#pragma omp for
#endif
for (j = 0; j < features; j++) {
// preallocate with random initial weights
W[i][k][j] = _random(-10, 10);
}
}
}
}
test_3d_classes2(&X); // create test data around circumference of a circle
save_2d_data("test3.csv", X); // save test data points
save_u_matrix("w31.csv", W); // save initial random weights
kohonen_som(X, &W, 1e-4); // train the SOM
save_u_matrix("w32.csv", W); // save the resultant weights
}
/**
* Convert clock cycle difference to time in seconds
*
* \param[in] start_t start clock
* \param[in] end_t end clock
* \returns time difference in seconds
*/
double get_clock_diff(clock_t start_t, clock_t end_t) {
return static_cast<double>(end_t - start_t) / CLOCKS_PER_SEC;
}
/** Main function */
int main(int argc, char **argv) {
#ifdef _OPENMP
std::cout << "Using OpenMP based parallelization\n";
#else
std::cout << "NOT using OpenMP based parallelization\n";
#endif
std::srand(std::time(nullptr));
std::clock_t start_clk = std::clock();
test1();
auto end_clk = std::clock();
std::cout << "Test 1 completed in " << get_clock_diff(start_clk, end_clk)
<< " sec\n";
start_clk = std::clock();
test2();
end_clk = std::clock();
std::cout << "Test 2 completed in " << get_clock_diff(start_clk, end_clk)
<< " sec\n";
start_clk = std::clock();
test3();
end_clk = std::clock();
std::cout << "Test 3 completed in " << get_clock_diff(start_clk, end_clk)
<< " sec\n";
std::cout
<< "(Note: Calculated times include: creating test sets, training "
"model and writing files to disk.)\n\n";
return 0;
}