/**
* @file
* @brief An algorithm to calculate the sum of [Fibonacci
* Sequence](https://en.wikipedia.org/wiki/Fibonacci_number): \f$\mathrm{F}(n) +
* \mathrm{F}(n+1) + .. + \mathrm{F}(m)\f$
* @details An algorithm to calculate the sum of Fibonacci Sequence:
* \f$\mathrm{F}(n) + \mathrm{F}(n+1) + .. + \mathrm{F}(m)\f$ where
* \f$\mathrm{F}(i)\f$ denotes the i-th Fibonacci Number . Note that F(0) = 0
* and F(1) = 1. The value of the sum is calculated using matrix exponentiation.
* Reference source:
* https://stackoverflow.com/questions/4357223/finding-the-sum-of-fibonacci-numbers
* @author [Sarthak Sahu](https://github.com/SarthakSahu1009)
*/
#include <cassert> /// for assert
#include <iostream> /// for std::cin and std::cout
#include <vector> /// for std::vector
/**
* @namespace math
* @brief Mathematical algorithms
*/
namespace math {
/**
* @namespace fibonacci_sum
* @brief Functions for the sum of the Fibonacci Sequence: \f$\mathrm{F}(n) +
* \mathrm{F}(n+1) + .. + \mathrm{F}(m)\f$
*/
namespace fibonacci_sum {
using matrix = std::vector<std::vector<uint64_t> >;
/**
* Function to multiply two matrices
* @param T matrix 1
* @param A martix 2
* @returns resultant matrix
*/
math::fibonacci_sum::matrix multiply(const math::fibonacci_sum::matrix &T,
const math::fibonacci_sum::matrix &A) {
math::fibonacci_sum::matrix result(2, std::vector<uint64_t>(2, 0));
// multiplying matrices
result[0][0] = T[0][0] * A[0][0] + T[0][1] * A[1][0];
result[0][1] = T[0][0] * A[0][1] + T[0][1] * A[1][1];
result[1][0] = T[1][0] * A[0][0] + T[1][1] * A[1][0];
result[1][1] = T[1][0] * A[0][1] + T[1][1] * A[1][1];
return result;
}
/**
* Function to compute A^n where A is a matrix.
* @param T matrix
* @param ex power
* @returns resultant matrix
*/
math::fibonacci_sum::matrix power(math::fibonacci_sum::matrix T, uint64_t ex) {
math::fibonacci_sum::matrix A{{1, 1}, {1, 0}};
if (ex == 0 || ex == 1) {
return T;
}
T = power(T, ex / 2);
T = multiply(T, T);
if (ex & 1) {
T = multiply(T, A);
}
return T;
}
/**
* Function to compute sum of fibonacci sequence from 0 to n.
* @param n number
* @returns uint64_t ans, the sum of sequence
*/
uint64_t result(uint64_t n) {
math::fibonacci_sum::matrix T{{1, 1}, {1, 0}};
T = power(T, n);
uint64_t ans = T[0][1];
ans = (ans - 1);
return ans;
}
/**
* Function to compute sum of fibonacci sequence from n to m.
* @param n start of sequence
* @param m end of sequence
* @returns uint64_t the sum of sequence
*/
uint64_t fiboSum(uint64_t n, uint64_t m) {
return (result(m + 2) - result(n + 1));
}
} // namespace fibonacci_sum
} // namespace math
/**
* Function for testing fiboSum function.
* test cases and assert statement.
* @returns `void`
*/
static void test() {
uint64_t n = 0, m = 3;
uint64_t test_1 = math::fibonacci_sum::fiboSum(n, m);
assert(test_1 == 4);
std::cout << "Passed Test 1!" << std::endl;
n = 3;
m = 5;
uint64_t test_2 = math::fibonacci_sum::fiboSum(n, m);
assert(test_2 == 10);
std::cout << "Passed Test 2!" << std::endl;
n = 5;
m = 7;
uint64_t test_3 = math::fibonacci_sum::fiboSum(n, m);
assert(test_3 == 26);
std::cout << "Passed Test 3!" << std::endl;
n = 7;
m = 10;
uint64_t test_4 = math::fibonacci_sum::fiboSum(n, m);
assert(test_4 == 123);
std::cout << "Passed Test 4!" << std::endl;
n = 9;
m = 12;
uint64_t test_5 = math::fibonacci_sum::fiboSum(n, m);
assert(test_5 == 322);
std::cout << "Passed Test 5!" << std::endl;
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
test(); // execute the tests
return 0;
}