/**
* @file
* @brief Implementation of [Elliptic Curve Diffie Hellman Key
* Exchange](https://cryptobook.nakov.com/asymmetric-key-ciphers/ecdh-key-exchange).
*
* @details
* The ECDH (Elliptic Curve Diffie–Hellman Key Exchange) is anonymous key
* agreement scheme, which allows two parties, each having an elliptic-curve
* public–private key pair, to establish a shared secret over an insecure
* channel.
* ECDH is very similar to the classical DHKE (Diffie–Hellman Key Exchange)
* algorithm, but it uses ECC point multiplication instead of modular
* exponentiations. ECDH is based on the following property of EC points:
* (a * G) * b = (b * G) * a
* If we have two secret numbers a and b (two private keys, belonging to Alice
* and Bob) and an ECC elliptic curve with generator point G, we can exchange
* over an insecure channel the values (a * G) and (b * G) (the public keys of
* Alice and Bob) and then we can derive a shared secret:
* secret = (a * G) * b = (b * G) * a.
* Pretty simple. The above equation takes the following form:
* alicePubKey * bobPrivKey = bobPubKey * alicePrivKey = secret
* @author [Ashish Daulatabad](https://github.com/AshishYUO)
*/
#include <cassert> /// for assert
#include <iostream> /// for IO operations
#include "uint256_t.hpp" /// for 256-bit integer
/**
* @namespace ciphers
* @brief Cipher algorithms
*/
namespace ciphers {
/**
* @brief namespace elliptic_curve_key_exchange
* @details Demonstration of [Elliptic Curve
* Diffie-Hellman](https://cryptobook.nakov.com/asymmetric-key-ciphers/ecdh-key-exchange)
* key exchange.
*/
namespace elliptic_curve_key_exchange {
/**
* @brief Definition of struct Point
* @details Definition of Point in the curve.
*/
typedef struct Point {
uint256_t x, y; /// x and y co-ordinates
/**
* @brief operator == for Point
* @details check whether co-ordinates are equal to the given point
* @param p given point to be checked with this
* @returns true if x and y are both equal with Point p, else false
*/
inline bool operator==(const Point &p) { return x == p.x && y == p.y; }
/**
* @brief ostream operator for printing Point
* @param op ostream operator
* @param p Point to be printed on console
* @returns op, the ostream object
*/
friend std::ostream &operator<<(std::ostream &op, const Point &p) {
op << p.x << " " << p.y;
return op;
}
} Point;
/**
* @brief This function calculates number raised to exponent power under modulo
* mod using [Modular
* Exponentiation](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/math/modular_exponentiation.cpp).
* @param number integer base
* @param power unsigned integer exponent
* @param mod integer modulo
* @return number raised to power modulo mod
*/
uint256_t exp(uint256_t number, uint256_t power, const uint256_t &mod) {
if (!power) {
return uint256_t(1);
}
uint256_t ans(1);
number = number % mod;
while (power) {
if ((power & 1)) {
ans = (ans * number) % mod;
}
power >>= 1;
if (power) {
number = (number * number) % mod;
}
}
return ans;
}
/**
* @brief Addition of points
* @details Add given point to generate third point. More description can be
* found
* [here](https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Point_addition),
* and
* [here](https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Point_doubling)
* @param a First point
* @param b Second point
* @param curve_a_coeff Coefficient `a` of the given curve (y^2 = x^3 + ax + b)
* % mod
* @param mod Given field
* @return the resultant point
*/
Point addition(Point a, Point b, const uint256_t &curve_a_coeff,
uint256_t mod) {
uint256_t lambda(0); /// Slope
uint256_t zero(0); /// value zero
lambda = zero = 0;
uint256_t inf = ~zero;
if (a.x != b.x || a.y != b.y) {
// Slope being infinite.
if (b.x == a.x) {
return {inf, inf};
}
uint256_t num = (b.y - a.y + mod), den = (b.x - a.x + mod);
lambda = (num * (exp(den, mod - 2, mod))) % mod;
} else {
/**
* slope when the line is tangent to curve. This operation is performed
* while doubling. Taking derivative of `y^2 = x^3 + ax + b`
* => `2y dy = (3 * x^2 + a)dx`
* => `(dy/dx) = (3x^2 + a)/(2y)`
*/
/**
* if y co-ordinate is zero, the slope is infinite, return inf.
* else calculate the slope (here % mod and store in lambda)
*/
if (!a.y) {
return {inf, inf};
}
uint256_t axsq = ((a.x * a.x)) % mod;
// Mulitply by 3 adjustment
axsq += (axsq << 1);
axsq %= mod;
// Mulitply by 2 adjustment
uint256_t a_2 = (a.y << 1);
lambda =
(((axsq + curve_a_coeff) % mod) * exp(a_2, mod - 2, mod)) % mod;
}
Point c;
// new point: x = ((lambda^2) - x1 - x2)
// y = (lambda * (x1 - x)) - y1
c.x = ((lambda * lambda) % mod + (mod << 1) - a.x - b.x) % mod;
c.y = (((lambda * (a.x + mod - c.x)) % mod) + mod - a.y) % mod;
return c;
}
/**
* @brief multiply Point and integer
* @details Multiply Point by a scalar factor (here it is a private key p). The
* multiplication is called as [double and add
* method](https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Double-and-add)
* @param a Point to multiply
* @param curve_a_coeff Coefficient of given curve (y^2 = x^3 + ax + b) % mod
* @param p The scalar value
* @param mod Given field
* @returns the resultant point
*/
Point multiply(const Point &a, const uint256_t &curve_a_coeff, uint256_t p,
const uint256_t &mod) {
Point N = a;
N.x %= mod;
N.y %= mod;
uint256_t inf{};
inf = ~uint256_t(0);
Point Q = {inf, inf};
while (p) {
if ((p & 1)) {
if (Q.x == inf && Q.y == inf) {
Q.x = N.x;
Q.y = N.y;
} else {
Q = addition(Q, N, curve_a_coeff, mod);
}
}
p >>= 1;
if (p) {
N = addition(N, N, curve_a_coeff, mod);
}
}
return Q;
}
} // namespace elliptic_curve_key_exchange
} // namespace ciphers
/**
* @brief Function to test the
* uint128_t header
* @returns void
*/
static void uint128_t_tests() {
// 1st test: Operations test
uint128_t a("122"), b("2312");
assert(a + b == 2434);
assert(b - a == 2190);
assert(a * b == 282064);
assert(b / a == 18);
assert(b % a == 116);
assert((a & b) == 8);
assert((a | b) == 2426);
assert((a ^ b) == 2418);
assert((a << 64) == uint128_t("2250502776992565297152"));
assert((b >> 7) == 18);
// 2nd test: Operations test
a = uint128_t("12321421424232142122");
b = uint128_t("23123212");
assert(a + b == uint128_t("12321421424255265334"));
assert(a - b == uint128_t("12321421424209018910"));
assert(a * b == uint128_t("284910839733861759501135864"));
assert(a / b == 532859423865LL);
assert(a % b == 3887742);
assert((a & b) == 18912520);
assert((a | b) == uint128_t("12321421424236352814"));
assert((a ^ b) == uint128_t("12321421424217440294"));
assert((a << 64) == uint128_t("227290107637132170748078080907806769152"));
}
/**
* @brief Function to test the
* uint256_t header
* @returns void
*/
static void uint256_t_tests() {
// 1st test: Operations test
uint256_t a("122"), b("2312");
assert(a + b == 2434);
assert(b - a == 2190);
assert(a * b == 282064);
assert(b / a == 18);
assert(b % a == 116);
assert((a & b) == 8);
assert((a | b) == 2426);
assert((a ^ b) == 2418);
assert((a << 64) == uint256_t("2250502776992565297152"));
assert((b >> 7) == 18);
// 2nd test: Operations test
a = uint256_t("12321423124513251424232142122");
b = uint256_t("23124312431243243215354315132413213212");
assert(a + b == uint256_t("23124312443564666339867566556645355334"));
// Since a < b, the value is greater
assert(a - b == uint256_t("115792089237316195423570985008687907853246860353"
"221642219366742944204948568846"));
assert(a * b == uint256_t("284924437928789743312147393953938013677909398222"
"169728183872115864"));
assert(b / a == uint256_t("1876756621"));
assert(b % a == uint256_t("2170491202688962563936723450"));
assert((a & b) == uint256_t("3553901085693256462344"));
assert((a | b) == uint256_t("23124312443564662785966480863388892990"));
assert((a ^ b) == uint256_t("23124312443564659232065395170132430646"));
assert((a << 128) == uint256_t("4192763024643754272961909047609369343091683"
"376561852756163540549632"));
}
/**
* @brief Function to test the
* provided algorithm above
* @returns void
*/
static void test() {
// demonstration of key exchange using curve secp112r1
// Equation of the form y^2 = (x^3 + ax + b) % P (here p is mod)
uint256_t a("4451685225093714772084598273548424"),
b("2061118396808653202902996166388514"),
mod("4451685225093714772084598273548427");
// Generator value: is pre-defined for the given curve
ciphers::elliptic_curve_key_exchange::Point ptr = {
uint256_t("188281465057972534892223778713752"),
uint256_t("3419875491033170827167861896082688")};
// Shared key generation.
// For alice
std::cout << "For alice:\n";
// Alice's private key (can be generated randomly)
uint256_t alice_private_key("164330438812053169644452143505618");
ciphers::elliptic_curve_key_exchange::Point alice_public_key =
multiply(ptr, a, alice_private_key, mod);
std::cout << "\tPrivate key: " << alice_private_key << "\n";
std::cout << "\tPublic Key: " << alice_public_key << std::endl;
// For Bob
std::cout << "For Bob:\n";
// Bob's private key (can be generated randomly)
uint256_t bob_private_key("1959473333748537081510525763478373");
ciphers::elliptic_curve_key_exchange::Point bob_public_key =
multiply(ptr, a, bob_private_key, mod);
std::cout << "\tPrivate key: " << bob_private_key << "\n";
std::cout << "\tPublic Key: " << bob_public_key << std::endl;
// After public key exchange, create a shared key for communication.
// create shared key:
ciphers::elliptic_curve_key_exchange::Point alice_shared_key = multiply(
bob_public_key, a,
alice_private_key, mod),
bob_shared_key = multiply(
alice_public_key, a,
bob_private_key, mod);
std::cout << "Shared keys:\n";
std::cout << alice_shared_key << std::endl;
std::cout << bob_shared_key << std::endl;
// Check whether shared keys are equal
assert(alice_shared_key == bob_shared_key);
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
uint128_t_tests(); // running predefined 128-bit unsigned integer tests
uint256_t_tests(); // running predefined 256-bit unsigned integer tests
test(); // running self-test implementations
return 0;
}