"""
Implements a disjoint set using Lists and some added heuristics for efficiency
Union by Rank Heuristic and Path Compression
"""
class DisjointSet:
def __init__(self, set_counts: list) -> None:
"""
Initialize with a list of the number of items in each set
and with rank = 1 for each set
"""
self.set_counts = set_counts
self.max_set = max(set_counts)
num_sets = len(set_counts)
self.ranks = [1] * num_sets
self.parents = list(range(num_sets))
def merge(self, src: int, dst: int) -> bool:
"""
Merge two sets together using Union by rank heuristic
Return True if successful
Merge two disjoint sets
>>> A = DisjointSet([1, 1, 1])
>>> A.merge(1, 2)
True
>>> A.merge(0, 2)
True
>>> A.merge(0, 1)
False
"""
src_parent = self.get_parent(src)
dst_parent = self.get_parent(dst)
if src_parent == dst_parent:
return False
if self.ranks[dst_parent] >= self.ranks[src_parent]:
self.set_counts[dst_parent] += self.set_counts[src_parent]
self.set_counts[src_parent] = 0
self.parents[src_parent] = dst_parent
if self.ranks[dst_parent] == self.ranks[src_parent]:
self.ranks[dst_parent] += 1
joined_set_size = self.set_counts[dst_parent]
else:
self.set_counts[src_parent] += self.set_counts[dst_parent]
self.set_counts[dst_parent] = 0
self.parents[dst_parent] = src_parent
joined_set_size = self.set_counts[src_parent]
self.max_set = max(self.max_set, joined_set_size)
return True
def get_parent(self, disj_set: int) -> int:
"""
Find the Parent of a given set
>>> A = DisjointSet([1, 1, 1])
>>> A.merge(1, 2)
True
>>> A.get_parent(0)
0
>>> A.get_parent(1)
2
"""
if self.parents[disj_set] == disj_set:
return disj_set
self.parents[disj_set] = self.get_parent(self.parents[disj_set])
return self.parents[disj_set]